- 120 metres
- 180 metres
- 324 metres
- 150 metres
Option D
Step 1: Convert speed into meters/second
To do calculations in meters and seconds, convert speed from km/h to m/s using the formula: Speed in m/s=Speed in km/h×10003600=Speed in km/h×518\text{Speed in m/s} = \text{Speed in km/h} \times \frac{1000}{3600} = \text{Speed in km/h} \times \frac{5}{18}Speed in m/s=Speed in km/h×36001000=Speed in km/h×185 60×518=30018=16.67 m/s60 \times \frac{5}{18} = \frac{300}{18} = 16.67 \text{ m/s}60×185=18300=16.67 m/s
Step 2: Use the formula
Distance=Speed×Time\text{Distance} = \text{Speed} \times \text{Time}Distance=Speed×Time Length of train=16.67×9=150.03 meters\text{Length of train} = 16.67 \times 9 = 150.03 \text{ meters}Length of train=16.67×9=150.03 meters
Rounding to the nearest whole number: 150 meters
✅ Final Answer: 150 metres ✅
\textbf{Problem:} \text{A train running at } 60 \, \text{km/h crosses a pole in } 9 \, \text{seconds. What is the length of the train?}
\] \[
\textbf{Step 1: Convert speed to m/s}
\] \[
60 \, \text{km/h} = 60 \times \frac{1000}{3600} = 16.67 \, \text{m/s}
\] \[
\textbf{Step 2: Use the formula:} \quad \text{Distance} = \text{Speed} \times \text{Time}
\] \[
\text{Distance} = 16.67 \times 9 = 150.03 \, \text{meters}
\] \[
\boxed{\text{Length of train} = 150 \, \text{meters}}
\]